4.5 Article

The regulatory factor SipA provides a link between NblS and NblR signal transduction pathways in the cyanobacterium Synechococcus sp PCC 7942

期刊

MOLECULAR MICROBIOLOGY
卷 66, 期 6, 页码 1607-1619

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1365-2958.2007.06035.x

关键词

-

向作者/读者索取更多资源

Cyanobacteria respond to environmental stress conditions by adjusting its photosynthesis machinery. When subjected to nutrient and high light stress, Synechococcus sp. PCC 7942 and other non-diazotrophic cyanobacteria degrade their phycobilisome, the light-harvesting complexes for photosynthesis. Phycobilisome degradation requires convergence of multiple signals onto the nblA gene. Despite considerable efforts to identify regulatory proteins involved in acclimation responses, the signal transduction mechanisms involved remain largely unknown. However, we show here that SipA, a protein that binds to the ATP-binding domain of the histidine kinase NblS, counteracts the function of the response regulator NblR in acclimation to stress, and is also involved in downregulation of the nblA gene. The integrity of the HLR1 element overlapping PnblA-1 and PnblA-2 promoters is required for downregulation of the nblA gene. Induction by NblR is strongly dependent on DNA sequences located at least 44 bp upstream transcription initiation from PnblA-2, and is also hampered by point mutations at HLR1. Genetic evidence of the antagonistic roles of NblR and SipA at regulation of the nblA gene, chlorosis and survival from stress is presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据