4.7 Article

Twinkle helicase (PEO1) gene mutation causes mitochondrial DNA depletion

期刊

ANNALS OF NEUROLOGY
卷 62, 期 6, 页码 579-587

出版社

WILEY-BLACKWELL
DOI: 10.1002/ana.21207

关键词

-

向作者/读者索取更多资源

Objective: Mitochondrial DNA (mtDNA) depletion syndrome (MDS) is a clinically and genetically heterogeneous group of autosomal recessive diseases characterized by a reduction in mtDNA copy number. Several nuclear genes have been shown to account for these severe oxidative phosphorylation disorders, but the disease-causing mutations remain largely unknown. Methods: By virtue of homozygosity mapping, we tested candidate genes involved in mtDNA maintenance in patients born to consanguineous parents. Results: We found homozygosity for microsatellite markers flanking the PEO1 gene, encoding the mitochondrial Twinkle helicase, in two sibs presenting a hepatocerebral form of MDS. Sequencing the PEO1 gene showed a homozygous mutation at a conserved position of the protein in the two patients (T457I). The modeling of the Twinkle protein showed that T457 is located in the interface between two monomers of the hexameric enzyme. Finally, using purified recombinant protein, we demonstrated that the T457I mutant Twinkle has a defective helicase activity. Interpretation: Although dominant Twinkle mutations have been previously reported in patients with autosomal dominant progressive external ophthalmoplegia and multiple mtDNA deletions, we report here the first recessive Twinkle mutation in patients with hepatocerebral form of MDS. Identifying other Twinkle mutations in MDS and/or autosomal dominant progressive external ophthalmoplegia and studying their impact on the isolated proteins should help in understanding why some mutations are recessive and others are dominant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据