4.4 Article

Membrane-active compounds activate the transcription factors Pdr1 and Pdr3 connecting pleiotropic drug resistance and membrane lipid homeostasis in Saccharomyces cerevisiae

期刊

MOLECULAR BIOLOGY OF THE CELL
卷 18, 期 12, 页码 4932-4944

出版社

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E07-06-0610

关键词

-

向作者/读者索取更多资源

The Saccharomyces cerevisiae zinc cluster transcription factors Pdr1 and Pdr3 mediate general drug resistance to many cytotoxic substances also known as pleiotropic drug resistance (PDR). The regulatory mechanisms that activate Pdr1 and Pdr3 in response to the various xenobiotics are poorly understood. In this study, we report that exposure of yeast cells to 2,4-dichlorophenol (DCP), benzyl alcohol, nonionic detergents, and lysophospholipids causes rapid activation of Pdr1 and Pdr3. Furthermore, Pdr1/Pdr3 target genes encoding the ATP-binding cassette proteins Pdr5 and Pdr15 confer resistance against these compounds. Genome-wide transcript analysis of wild-type and pdr1 Delta pdr3 Delta cells treated with DCP reveals most prominently the activation of the PDR response but also other stress response pathways. Polyoxyethylene-9-laurylether treatment produced a similar profile with regard to activation of Pdr1 and Pdr3, suggesting activation of these by detergents. The Pdr1/Pdr3 response element is sufficient to confer regulation to a reporter gene by these substances in a Pdr1/Pdr3-dependent manner. Our data indicate that compounds with potential membrane-damaging or -perturbing effects might function as an activating signal for Pdr1 and Pdr3, and they suggest a role for their target genes in membrane lipid organization or remodeling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据