4.5 Article

Ultraporous 3D polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template

期刊

POLYMER ENGINEERING AND SCIENCE
卷 47, 期 12, 页码 2020-2026

出版社

WILEY
DOI: 10.1002/pen.20914

关键词

-

向作者/读者索取更多资源

While electrospinning provides an excellent preparation method for the manufacturing of polymer fibers with defined diameter, controlling the overall porosity of the resulting fiber assemblies has remained elusive, particularly at higher porosities. In this study, the use of a low-temperature fiber collection device in air with con trolled humidity allowed the simultaneous deposition of polymer fibers and ice particles from condensing humidity. The ice particles were intimately embedded within the polymer fibers and served as a pore template thus defining the mesh porosity after drying of the collected fiber assemblies. The amount of water condensation therefore contributes to the control of the mean interfiber distance and the resulting porosity. This simple and well accessible use of ice crystals as void templates gives access to the preparation of biodegradable tissue engineering scaffolds with an up to four times higher porosity if compared to conventional fiber electrospinning. The successful application of low-temperature electrospinning using polyesters or polyurethanes suggests a broad, material independent applicability of the process for the preparation of highly porous polymer structures. POLYM. ENG. SCI., 47:2020-2026, 2007. (C) 2007 Society of Plastics Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据