4.4 Article

Structure-function analysis of the antiangiogenic ATWLPPR peptide inhibiting VEGF165 binding to neuropilin-1 and molecular dynamics simulations of the ATWLPPR/neuropilin-1 complex

期刊

PEPTIDES
卷 28, 期 12, 页码 2397-2402

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.peptides.2007.09.013

关键词

-

向作者/读者索取更多资源

Heptapeptide ATWLPPR (A7R), identified in our laboratory by screening a mutated phage library, was shown to bind specifically to neuropilin-1 (NRP-1) and then to selectively inhibit VEGF(165) binding to this receptor. In vivo, treatment with A7R resulted in decreasing breast cancer angiogenesis and growth. The present work is focused on structural characterization of A7R. Analogs of the peptide, obtained by substitution of each amino acid with alanine (alanine-scanning) or by amino acid deletion, have been systematically assayed to determine the relative importance of the side chains of each residue with respect to the inhibitory effect of A7R on VEGF165 binding to NRP-1. We show here the importance of the C-terminal sequence LPPR and particularly the key role of C-terminal arginine. In solution, A7R displays significant secondary structure of the backbone adopting an extended conformation. However, the functional groups of arginine are very flexible in the absence of NRP-1 pointing to an induced fit upon binding to the receptor. A MD trajectory of the A7R/NRP-1 complex in explicit water, based on the recent tuftsin/NRP-1 crystal structure, has revealed the hydrogen-bonding network that contributes to A7R's binding activity. (c) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据