4.6 Article

Observing surf-zone dispersion with drifters

期刊

JOURNAL OF PHYSICAL OCEANOGRAPHY
卷 37, 期 12, 页码 2920-2939

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/2007JPO3580.1

关键词

-

向作者/读者索取更多资源

Surf-zone dispersion is studied using drifter observations collected within about 200 m of the shoreline (at depths of less than about 5 m) on a beach with approximately alongshore uniform bathymetry and waves. There were about 70 individual drifter releases, each 10-20 min in duration, on two consecutive days. On the first day, the sea-swell significant wave height H-s was equal to 0.5 m and mean alongshore currents vertical bar(v) over bar vertical bar were moderate (<0.1 m s(-1)). On the second day, the obliquely incident waves were larger, with Hs equal to 1.4 m, and at some surf-zone locations vertical bar<(v)over bar>vertical bar was greater than 0.5 m s(-1). The one-particle diffusivity was larger, with larger waves and stronger currents. On both days, the one-particle diffusivity tensor is nonisotropic and time-dependent. The major axis is initially parallel to the cross-shore direction, but after a few wave periods it is aligned with the alongshore direction. In both the along-and cross-shore directions, the asymptotic diffusivity is reached sooner within, rather than seaward of, the surf zone. Two-particle statistics indicate that relative dispersion grows like D-2(t) similar to t(3/2) and that the relative diffusivity is scale-dependent as mu similar to l(2/3), with l being the particle separation. The observed scalings differ from 2D inertial-subrange scalings [D-2(t) similar to t(3) and mu similar to l(4/3)]. Separations have a non-Gaussian self-similar distribution that is independent of time. The two-particle statistics are consistent with a nonconstant-coefficient diffusion equation for the separation probability density functions. The dispersion is explained by neither irrotational surface gravity waves nor shear dispersion. The observations imply the existence of a 2D eddy field with 5-50-m length scales, the source of which is speculated to be alongshore gradients in breaking-wave height associated with finite crest lengths.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据