4.6 Article

Excitation spectrum of bosons in a finite one-dimensional circular waveguide via the Bethe ansatz

期刊

PHYSICAL REVIEW A
卷 76, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.76.063620

关键词

-

向作者/读者索取更多资源

The exactly solvable Lieb-Liniger model of interacting bosons in one dimension has attracted renewed interest as current experiments with ultracold atoms begin to probe this regime. Here we numerically solve the equations arising from the Bethe ansatz solution for the exact many-body wave function in a finite-size system of up to 20 particles for attractive interactions. We discuss the features of the solutions, and how they deviate from the well-known string solutions [Thacker, Rev. Mod. Phys. 53, 253 (1981)] at finite densities. We present excited state string solutions in the limit of strong interactions and discuss their physical interpretation, as well as the characteristics of the quantum phase transition that occurs as a function of interaction strength in the mean-field limit. Finally we compare our results to those of exact diagonalization of the many-body Hamiltonian in a truncated basis. We also present excited state solutions and the excitation spectrum for the repulsive one-dimensional Bose gas on a ring.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据