4.7 Article

A chemical-genetic approach to elucidate protein kinase function in planta

期刊

PLANT MOLECULAR BIOLOGY
卷 65, 期 6, 页码 817-827

出版社

SPRINGER
DOI: 10.1007/s11103-007-9245-9

关键词

ATP-binding pocket; gatekeeper residue; cold stress; phosphoproteome; ProQ diamond; 2D-gel electrophoresis

向作者/读者索取更多资源

The major objective in protein kinase research is the identification of the biological process, in which an individual enzyme is integrated. Protein kinase-mediated signalling is thereby often addressed by single knock-out mutation- or co-suppression-based reverse genetics approaches. If a protein kinase of interest is a member of a multi gene family, however, no obvious phenotypic alteration in the morphology or in biochemical parameters may become evident because mutant phenotypes may be compensated by functional redundancy or homeostasis. Here we establish a chemical-genetic screen combining ATP-analogue sensitive (as) kinase variants and molecular fingerprinting techniques to study members of the plant calcium-dependent protein kinase (CDPK) family in vivo. CDPKs have been implicated in fast signalling responses upon external abiotic and biotic stress stimuli. CDPKs carrying the as-mutation did not show altered phosphorylation kinetics with ATP as substrate, but were able to use ATP analogues as phosphate donors or as kinase inhibitors. For functional characterization in planta, we have substituted an Arabidopsis thaliana mutant line of AtCPK1 with the respective as-variant under the native CPK1 promoter. Seedlings of Arabidopsis wild type and AtCPK1 as-lines were treated with the ATP analogue inhibitor 1-NA-PP1 and exposed to cold stress conditions. Rapid cold-induced changes in the phosphoproteome were analysed by 2D-gel-electrophoresis and phosphoprotein staining. The comparison between wild type and AtCPK1 as-plants before and after inhibitor treatment revealed differential CPK1-dependent and cold-stress-induced phosphoprotein signals. In this study, we established the chemical-genetic approach as a tool, which allows the investigation of plant-specific classes of protein kinases in planta and which facilitates the identification of rapid changes of molecular biomarkers in kinase-mediated signalling networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据