4.6 Article

Molecular dynamics simulations of temperature-induced structural transitions at twist boundaries in silicon

期刊

PHYSICAL REVIEW B
卷 76, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.245317

关键词

-

向作者/读者索取更多资源

The annealing of three (001) twist grain boundaries in silicon, Sigma 25, Sigma 5, and Sigma 29 has been simulated over a range of temperatures up to the melting point. In contrast to earlier work the ground-state structures of all our boundaries at absolute zero are ordered and comprise well-defined structural units. We found that the boundaries display some degree of structural order at all temperatures up to the melting point. The state of structural order is time-dependent involving fluctuations between different local states of order. In the large angle boundaries (Sigma 5 and Sigma 29) we found a continuous disordering transition resulting in complete disorder, and a possibly unbounded interfacial width, only at the bulk melting point. For the small angle Sigma 25 boundary the width remained finite at all temperatures up to the bulk melting point, and the degree of order was greater than for the large angle boundaries. The quantification of these results has been made possible by the use of an existing bond orientational order parameter, and new techniques introduced here to identify structural units in dynamic boundary structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据