4.7 Article

A high strength nanocomposite based on microcrystalline cellulose and polyurethane

期刊

BIOMACROMOLECULES
卷 8, 期 12, 页码 3687-3692

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm701061t

关键词

-

向作者/读者索取更多资源

A high-strength elastomeric nanocomposite has successfully been prepared by dispersing microcrystalline cellulose in a polyurethane matrix. The resulting nanocomposites show increased strain-to-failure in addition to increased stiffness and strength compared to the unfilled polyurethane. The optimal composite contained 5 wt % cellulose. The average true strength for this composition was 257 MPa, compared with 39 MPa for the neat polyurethane, and showed the highest strain-to-failure. The improvements of stiffness, strength, as well as strain-to-failure are believed to be due to good interaction, by both covalent and hydrogen bonds, between the polyurethane and the cellulose nanofibrils.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据