4.6 Article

Implementation of holonomic quantum computation through engineering and manipulating the environment

期刊

PHYSICAL REVIEW A
卷 76, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.76.062311

关键词

-

向作者/读者索取更多资源

We consider an atom-field coupled system in which two pairs of four-level atoms are respectively driven by laser fields and trapped in two distant cavities that are connected by an optical fiber. First, we show that an effective squeezing reservoir can be engineered under appropriate conditions. Then, we show that a two-qubit geometric controlled-PHASE (CPHASE) gate between the atoms in the two cavities can be implemented through adiabatically manipulating the engineered reservoir along a closed loop. This scheme that combines an engineering environment with decoherence-free space and geometric phase quantum computation together has the following remarkable feature: a CPHASE gate with arbitrary phase shift is implemented by simply changing the strength and relative phase of the driving fields.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据