4.4 Article

A measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of Caenorhabditis elegans

期刊

GENETICS
卷 177, 期 4, 页码 2063-2074

出版社

GENETICS SOCIETY AMERICA
DOI: 10.1534/genetics.107.080788

关键词

-

向作者/读者索取更多资源

SOD-1 and SOD-2 detoxify superoxide in the cytoplasm and mitochondria. We find that, although several long-lived mutants of Caenorhabditis elegans have increased SOD levels, this phenomenon does not correlate with life span or growth rate. Furthermore, although disruption of sod-1 or -2 expression produces numerous phenotypes, including increased sensitivity to paraquat: and increased oxidative damage to proteins (except in daf-2 mutants), this fails to shorten the life span of these long-lived mutants. In fact, sod-1(RNAi) increases the life span of daf-2 mutants and sod-2(RNAi) that of clk-1 mutants. Our results suggest that increased superoxide detoxification and low oxidative damage are not crucial for the longevity of the mutants examined, with the possible exception of daf-2, where our results are inconclusive. These results are surprising because several of the long-lived mutants that we examined specifically affect mitochondrial electron transport, a process whose involvement in life-span determination is believed to be related to superoxide generation. We discuss the significance of our findings in light of the oxidative stress theory of aging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据