4.8 Article

Long-term evolution of transposable elements

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0705238104

关键词

genome evolution; molecular domestication; population genetics

向作者/读者索取更多资源

Transposable elements are often considered parasitic DNA sequences, able to invade the genome of their host thanks to their self-replicating ability. This colonization process has been extensively studied, both theoretically and experimentally, but their long-term coevolution with the genomes is still poorly understood. In this work, we aim to challenge previous population genetics models by considering features of transposable elements as quantitative, rather than discrete, variables. We also describe more realistic transposable element dynamics by accounting for the variability of the insertion effect, from deleterious to adaptive, as well as mutations leading to a loss of transposition activity and to nonautonomous copies. Individual-based simulations of the behavior of a transposable-element family over several thousand generations show different ways in which active or inactive copies can be maintained for a very long time. Results reveal an unexpected impact of genetic drift on the junk DNA content of the genome and strongly question the likelihood of the sustainable long-term stable transposition-selection equilibrium on which numerous previous works were based.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据