4.8 Article

Host-parasite 'Red Queen' dynamics archived in pond sediment

期刊

NATURE
卷 450, 期 7171, 页码 870-U16

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature06291

关键词

-

向作者/读者索取更多资源

Antagonistic interactions between hosts and parasites are a key structuring force in natural populations, driving coevolution(1,2). However, direct empirical evidence of long-term host-parasite coevolution, in particular `Red Queen' dynamics-in which antagonistic biotic interactions such as host-parasite interactions can lead to reciprocal evolutionary dynamics-is rare(3-5), and current data, although consistent with theories of antagonistic coevolution, do not reveal the temporal dynamics of the process(6). Dormant stages of both the water flea Daphnia and its microparasites are conserved in lake sediments, providing an archive of past gene pools. Here we use this fact to reconstruct rapid coevolutionary dynamics in a natural setting and show that the parasite rapidly adapts to its host over a period of only a few years. A coevolutionary model based on negative frequency-dependent selection, and designed to mimic essential aspects of our host parasite system, corroborated these experimental results. In line with the idea of continuing host-parasite coevolution, temporal variation in parasite infectivity changed little over time. In contrast, from the moment the parasite was first found in the sediments, we observed a steady increase in virulence over time, associated with higher fitness of the parasite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据