4.6 Article

Direct time-of-flight for quantitative, real-time in-beam PET: a concept and feasibility study

期刊

PHYSICS IN MEDICINE AND BIOLOGY
卷 52, 期 23, 页码 6795-6811

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0031-9155/52/23/002

关键词

-

向作者/读者索取更多资源

We extrapolate the impact of recent detector and scintillator developments, enabling sub-nanosecond coincidence timing resolution (tau), onto in-beam positron emission tomography (in-beam PET) for monitoring charged-hadron radiation therapy. For tau <= 200 ps full width at half maximum, the information given by the time-of-flight (TOF) difference between the two opposing gamma-rays enables shift-variant, artefact-free in-beam tomographic imaging by means of limited-angle, dual-head detectors. We present the corresponding fast, TOF-based and backprojection-free, 3D reconstruction algorithm that, coupled with a real-time data acquisition and a fast detector encoding scheme, allows the sampled beta(+)-activity to be visualized in the object during the course of the irradiation. Despite the very low statistics scenario typical of in-beam PET, real-treatment simulations show that in-beam TOF-PET enables high-precision images to be obtained in real-time, either with closed-ring or with fixed, dual-head in-beam TOF-PET systems. The latter greatly alleviates the installation of in-beam PET at radiotherapeutic sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据