4.6 Article

Shear-induced disulfide bond formation regulates adhesion activity of von Willebrand factor

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 282, 期 49, 页码 35604-35611

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M704047200

关键词

-

资金

  1. NHLBI NIH HHS [HL71895, HL30914] Funding Source: Medline

向作者/读者索取更多资源

von Willebrand factor (VWF) is the largest multimeric adhesion ligand circulating in blood. Its adhesion activity is related to multimer size, with the ultra-large forms freshly released from the activated endothelial cells being most active, capable of spontaneously binding to platelets. In comparison, smaller plasma forms circulating in blood bind platelets only under high fluid shear stress or induced by modulators. The structure-function relationships that distinguish the two types of VWF multimers are not known. In this study, we demonstrate that some of the plasma VWF multimers contain surface-exposed free thiols. Physiological and pathological levels of shear stresses (50 and 100 dynes/cm(2)) promote the formation of disulfide bonds utilizing these free thiols. The shear-induced thiol-disulfide exchange increases VWF binding to platelets. The thiol-disulfide exchange involves some or all of nine cysteine residues (Cys(889), Cys(898), Cys(2448), Cys(2451), Cys(2490), Cys(2491), Cys(2453), Cys(2528), and Cys(2533)) in the D3 and C domains as determined by mass spectrometry of the tryptic VWF peptides. These results suggest that the thiol-disulfide state may serve as an important structural determinant of VWF adhesion activity and can be modified by fluid shear stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据