4.5 Article

Scaling of Huygens-front speedup in weakly random media

期刊

PHYSICS LETTERS A
卷 372, 期 1, 页码 5-11

出版社

ELSEVIER
DOI: 10.1016/j.physleta.2007.06.078

关键词

front propagation; random media; geometrical optics; turbulent combustion; Burgers equation

向作者/读者索取更多资源

Front propagation described by Huygens' principle is a fundamental mechanism of spatial spreading of a property or an effect, occurring in optics, acoustics, ecology and combustion. If the local front speed varies randomly due to inhomogeneity or motion of the medium (as in turbulent premixed combustion), then the front wrinkles and its overall passage rate (turbulent burning velocity) increases. The calculation of this speedup is subtle because it involves the minimum-time propagation trajectory. Here we show mathematically that for a medium with weak isotropic random fluctuations, under mild conditions on its spatial structure, the speedup scales with the 4/3 power of the fluctuation amplitude. This result, which verifies a previous conjecture while clarifying its scope, is obtained by reducing the propagation problem to the inviscid Burgers equation with white-in-time forcing. Consequently, field-theoretic analyses of the Burgers equation have significant implications for fronts in random media, even beyond the weak-fluctuation limit. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据