4.8 Article

Circuit theory predicts gene flow in plant and animal populations

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0706568104

关键词

Gulo gulo; isolation by resistance; landscape connectivity; Swietenia macrophylla; landscape genetics

向作者/读者索取更多资源

Maintaining connectivity for broad-scale ecological processes like dispersal and gene flow is essential for conserving endangered species in fragmented landscapes. However, determining which habitats should be set aside to promote connectivity has been difficult because existing models cannot incorporate effects of multiple pathways linking populations. Here, we test an ecological connectivity model that overcomes this obstacle by borrowing from electrical circuit theory. The model vastly improves gene flow predictions because it simultaneously integrates all possible pathways connecting populations. When applied to data from threatened mammal and tree species, the model consistently outperformed conventional gene flow models, revealing that barriers were less important in structuring populations than previously thought. Circuit theory now provides the best-justified method to bridge landscape and genetic data, and holds much promise in ecology, evolution, and conservation planning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据