4.8 Article

Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0707419104

关键词

endosymbiosis; genome evolution; genome reduction

向作者/读者索取更多资源

Nucleomorphs are the remnant nuclei of algal endosymbionts that took up residence inside a nonphotosynthetic eukaryotic host. The nucleomorphs of cryptophytes and chlorarachniophytes are derived from red and green algal endosymbionts, respectively, and represent a stunning example of convergent evolution: their genomes have independently been reduced and compacted to <1 megabase pairs (Mbp) in size (the smallest nuclear genomes known) and to a similar three-chromosome architecture. The molecular processes underlying genome reduction and compaction in eukaryotes are largely unknown, as is the impact of reduction/compaction on protein structure and function. Here, we present the complete 0.572-Mbp nucleomorph genome of the cryptophyte Herniselmis andersenii and show that it is completely devoid of spliceosomal introns and genes for splicing RNAs-a case of complete intron loss in a nuclear genome. Comparison of H. andersenii proteins to those encoded in the slightly smaller (0.551-Mbp) nucleomorph genome of another cryptophyte, Guillardia theta, and to their homologs in the unicellular red alga Cyanidioschyzon merolae reveal that (i) cryptophyte nucleomorph genomes encode proteins that are significantly smaller than those in their free-living algal ancestors, and (ii) the smaller, more compact G. theta nucleomorph genome en codes significantly smaller proteins than that of H. andersenii. These results indicate that genome compaction can eliminate both coding and noncoding DNA and, consequently, drive the evolution of protein structure and function. Nucleomorph proteins have the potential to reveal the minimal functional units required for basic eukaryotic cellular processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据