4.8 Article

Detection of reactive tetrahedral intermediates in a deep cavitand with an introverted functionality

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 129, 期 49, 页码 15330-15339

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja0759343

关键词

-

资金

  1. NIGMS NIH HHS [GM 27932] Funding Source: Medline

向作者/读者索取更多资源

Labile hemiaminal intermediates are stabilized by binding in a deep cavitand with an introverted aldehyde functionality. The aldehyde is attached to the cavitand via an anthracene spacer that rotates rapidly about the cavitand rim. The half-lives of these hemiaminals vary from 30 min to over 100 h at ambient temperature, due to hydrogen bonding with the organized peptide-like framework at the cavitand rim. The intermediates are sufficiently long-lived to allow study by 2D NMR techniques requiring many hours of acquisition time. Mechanistic analysis of the dehydration step shows first-order kinetics. The analogous extroverted reaction was also performed, where the addition took place outside the cavitand, displaying standard steady-state kinetics; no hemiaminal was observed. The cavitand shows strong selectivity based not on binding affinity but upon the rate of the product-forming step. A 10:1 ratio of product imines was obtained, while the initial binding ratio was 1:1. The cavitand acts as a mimic of enzymes in that it uses weak binding forces to stabilize reactive intermediates and isolates them from the medium. The synthetic environment allows direct detection and analysis of the intermediates, as opposed to natural systems that must be analyzed indirectly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据