4.3 Article

Delayed functional expression of neuronal chemokine receptors following focal nerve demyelination in the rat: a mechanism for the development of chronic sensitization of peripheral nociceptors

期刊

MOLECULAR PAIN
卷 3, 期 -, 页码 -

出版社

SAGE PUBLICATIONS INC
DOI: 10.1186/1744-8069-3-38

关键词

-

资金

  1. NIDA NIH HHS [R01 DA013141, DA013141] Funding Source: Medline
  2. NIMH NIH HHS [MH040165, R37 MH040165] Funding Source: Medline
  3. NINDS NIH HHS [R01 NS049136, R01 NS049136-02, R01 NS043095, NS043095, NS049136] Funding Source: Medline

向作者/读者索取更多资源

Background: Animal and clinical studies have revealed that focal peripheral nerve axon demyelination is accompanied by nociceptive pain behavior. C-C and C-X-C chemokines and their receptors have been strongly implicated in demyelinating polyneuropathies and persistent pain syndromes. Herein, we studied the degree to which chronic nociceptive pain behavior is correlated with the neuronal expression of chemokines and their receptors following unilateral lysophosphatidylcholine (LPC)-induced focal demyelination of the sciatic nerve in rats. Results: Focal nerve demyelination increased behavioral reflex responsiveness to mechanical stimuli between postoperative day (POD) 3 and POD28 in both the hindpaw ipsilateral and contralateral to the nerve injury. This behavior was accompanied by a bilateral increase in the numbers of primary sensory neurons expressing the chemokine receptors CCR2, CCR5, and CXCR4 by PODI4, with no change in the pattern of CXCR3 expression. Significant increases in the numbers of neurons expressing the chemokines monocyte chemoattractant protein-I (MCP-I/CCL2), Regulated on Activation, Normal T Expressed and Secreted (RANTES/CCL5) and interferon gamma-inducing protein-10 (IP-10/CXCLI0) were also evident following nerve injury, although neuronal expression pattern of stromal cell derived factor-I alpha (SDFI/CXCLI2) did not change. Functional studies demonstrated that acutely dissociated sensory neurons derived from LPC-injured animals responded with increased [Ca2+](i) following exposure to MCP-I, IP-10, SDFI and RANTES on POD 14 and 28, but these responses were largely absent by POD35. On days 14 and 28, rats received either saline or a CCR2 receptor antagonist isomer (CCR2 RA-[R]) or its inactive enantiomer (CCR2 RA-[S]) by intraperitoneal (i. p.) injection. CCR2 RA-[R] treatment of nerve-injured rats produced stereospecific bilateral reversal of tactile hyperalgesia. Conclusion: These results suggest that the presence of chemokine signaling by both injured and adjacent, uninjured sensory neurons is correlated with the maintenance phase of a persistent pain state, suggesting that chemokine receptor antagonists may be an important therapeutic intervention for chronic pain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据