4.7 Article Proceedings Paper

Advanced design of periodical architectures in bulk metals by means of Laser Interference Metallurgy

期刊

APPLIED SURFACE SCIENCE
卷 254, 期 4, 页码 930-936

出版社

ELSEVIER
DOI: 10.1016/j.apsusc.2007.08.010

关键词

Laser Interference Metallurgy; metallurgical processes; laser patterning

向作者/读者索取更多资源

Patterning of high-resolution features on large-area metallic substrates has been performed by means of the Laser Interference Metallurgy method. Due to the intensity distribution of the interference pattern, this technique allows to locally and periodically heat the material surface to temperatures higher than the melting point with a long-range order. In this study, commercial stainless steel, copper and aluminum substrates were irradiated using single pulses of a nanosecond Nd:YAG laser with two and three laser-beam configurations operating at 355 nm of wavelength. Thermal simulations have been performed by finite element method and compared to the experiments. The results indicate that the structuring is produced by a surface tension driven mechanism induced by the thermal gradient. Moreover, metals with short thermal diffusion lengths present very homogeneous structures and the structure depth that can be achieved at relatively high laser fluences during single-pulse experiments is on the order of the diffusion length. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据