4.6 Article

Droplet evaporation: A molecular dynamics investigation

期刊

JOURNAL OF APPLIED PHYSICS
卷 102, 期 12, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.2821753

关键词

-

向作者/读者索取更多资源

Molecular dynamics simulations are used to model the evaporation of a Lennard-Jones argon nanodroplet into its own vapor for a wide range of ambient temperatures and ambient pressures. The transitions from (i) high to low Knudsen number evaporation and (ii) subcritical to supercritical evaporation are observed. At a low ambient pressure of 0.4 MPa, the initial droplet Knudsen number is 1 and the droplet diameter decreases linearly with time, consistent with kinetic theory predictions. For a moderate ambient pressure of 3.0 MPa, the initial droplet Knudsen number is 0.1 and the square of the droplet diameter decreases linearly with time. For a high ambient pressure of 6.1 MPa, the evaporation is supercritical and the number of atoms in the droplet decreases linearly for the majority of the droplet lifetime. A technique is introduced to maintain a constant ambient pressure over the droplet lifetime, allowing for the observation of the influence of the ambient conditions on the droplet surface temperature. When the ambient pressure is greater than or equal to 1.4 times the critical pressure, the droplet surface temperature reaches the critical temperature and the evaporation is supercritical. Below this ambient pressure, the droplet surface temperature reaches a pseudowet-bulb condition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据