4.7 Article

Insulin-like growth factor-1 potentiates platelet activation via the IRS/PI3Kα pathway

期刊

BLOOD
卷 110, 期 13, 页码 4243-4252

出版社

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2006-10-050633

关键词

-

向作者/读者索取更多资源

As insulin-like growth factor-1 (IGF-1) is present in the a granules of platelets and its receptor is expressed on the platelet surface, it may contribute to the amplification of platelet responses and pathogenesis of cardiovascular disease. The functional and signaling pathways that are involved in IGF-1 modulation of platelet function, however, are presently unknown. Here, I report that IGF-1 stimulation of platelets results in dose-dependent phosphorylation of the IGF receptor in the range of 1 to 100 nM. Phosphorylation of the IGF receptor is rapid and sustained, with maximal phosphorylation reached within 1 minute. Furthermore, IGF-1 stimulates tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and IRS-2 and their association with the p85 subunit of phosphoinositide-3 kinase (PI3K). IGF-1-stimulated tyrosine phosphorylation of IRS-1 and IRS-2 and subsequent p85 binding is transient and precedes phosphorylation of protein kinase B (PKB) on Ser473. PAR-1-mediated platelet aggregation is potentiated by IGF-1 and this potentiation, together with PKB phosphorylation, is abolished by the PI3K alpha inhibitors PI-103 and PIK-75. Importantly, the IGF receptor inhibitor NVP-AEW541 and the neutralization antibody alpha IR3 inhibit SFLLRN-stimulated aggregation, implicating IGF-1 in autocrine regulation of platelet function. These results demonstrate that IGF-1 activates the IGF receptor/IRS/PI3K/PKB pathway, and that PI3Ka, is essential for the potentiatory effect of IGF-1 on platelet responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据