4.7 Article

Functional relationships between denudation and hillslope form and relief

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 264, 期 1-2, 页码 245-258

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.epsl.2007.09.035

关键词

relief; hillslope; erosion; landscape; rock uplift

向作者/读者索取更多资源

Functional relationships between landscape morphology and denudation rate allow for the estimation of sediment fluxes using readily available topographic information. Empirical studies of topography-erosion linkages typically employ data with diverse temporal and broad spatial scales, such that heterogeneity in properties and processes may cloud fundamental process-scale feedbacks between tectonics, climate, and landscape development. Here, we use a previously proposed nonlinear model for sediment transport on hillslopes to formulate 1-D dimensionless functions for hillslope morphology as well as a generalized expression relating steady-state hillslope relief to erosion rate, hillslope transport parameters, and hillslope length. For study sites in the Oregon Coast Range and Gabilan Mesa, CA, model predictions of local relief and average hillslope gradient compare well with values detived from high-resolution topographic data acquired via airborne laser altimetry. Our formulation yields a nondimensional number describing the extent to which the nonlinearity in our gradient-flux model affects slope morphology and landscape response to tectonic and climatic forcing. These results should be useful for inferring rates of hillslope denudation and sediment flux from topography, or for coarse-scale landscape evolution simulations, in that first-order hillslope properties can be calculated without explicit modeling of individual hillslopes. (c) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据