4.7 Article

Preparation of mesostructured barium sulfate with high surface area by dispersion method and its characterization

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 316, 期 2, 页码 645-651

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2007.09.004

关键词

barium hydroxide; sulphuric acid; ethylene glycol; mesoporous material

向作者/读者索取更多资源

The spherical and cubic mesoporous BaSO4 particles with high surface area were successfully produced via one-step process through precipitation reaction in aqueous solution of Ba(OH)(2) and H2SO4 with ethylene glycol (n-HOCH2CH2OH) as a modifying agent. The BaSO4 nanomaterial revealed that the high surface area and the mesoporous was stable up to 400 degrees C. Agglomerate mesoporous barium sulfate nanomaterials were obtained by the reaction of Ba2+ and SO42- with ethylene glycol aqueous solution. The ethylene glycol was used to control the BaSO4 particle size and to modify the surface property of the particles produced from the precipitation. The dried and calcined mesoporous BaSO4 nanomaterials were characterized by X-ray diffraction (XRD), BET surface area and N-2 adsorption-desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared resonance (FTIR) and thermogravimetric analysis (TGA). The as-prepared mesoporous dried BaSO4 possesses a high BET surface area of 91.56 m(2) g(-1), pore volume of 0.188 cm(3) g(-1) (P/P-0 = 0.9849) and pore size of 8.22 nm. The SEM indicates that the morphology of BaSO4 nanomaterial shows shell like particles up to 400 degrees C, after that there is drastically change in the material due to agglomeration. Synthesis of mesoporous BaSO4 nanomaterial is of significant importance for both sulphuric acid decomposition and oxidation of methane to methanol. (C) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据