4.8 Article

SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole

期刊

CURRENT BIOLOGY
卷 17, 期 24, 页码 2169-2174

出版社

CELL PRESS
DOI: 10.1016/j.cub.2007.11.046

关键词

-

向作者/读者索取更多资源

Centrioles consist of nine-triplet microtubules arranged in rotational symmetry. This structure is highly conserved among various eukaryotic organisms and serves as the base for the ciliary axoneme. Recently, several proteins such as SAS-6 have been identified as essential to the early process of centriole assembly [1, 2], but the mechanism that produces the 9-fold symmetry is poorly understood. In C. elegans and Drosophila, SAS-6 has been suggested to function in the formation of a centriolar precursor, a central tube that then assembles nine-singlet microtubules on its surface. However, the generality of the central tube is not clear because in many other organisms, the first structure appearing in the centriole assembly is not a tube but a flat amorphous ring or a cartwheel-structure with a hub and nine radiating spokes. Here we show that in Chlamydomonas the SAS-6 protein localizes to the central part of the cartwheel and that a null mutant of SAS-6, bld12, lacks that part. Intriguingly, this mutant frequently has centrioles; composed of 7,8, 10, or 11 triplets in addition to 9-triplet centrioles. We presume that, in many organisms, SAS-6 is an essential component of the cartwheel, a structure that stabilizes the 9-triplet structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据