4.8 Article

Mps1 kinase promotes sister-kinetochore bi-orientation by a tension-dependent mechanism

期刊

CURRENT BIOLOGY
卷 17, 期 24, 页码 2175-2182

出版社

CELL PRESS
DOI: 10.1016/j.cub.2007.11.032

关键词

-

资金

  1. Cancer Research UK [A6996, A5437] Funding Source: Medline

向作者/读者索取更多资源

Segregation of sister chromatids to opposite spindle poles during anaphase is dependent on the prior capture of sister kinetochores by microtubules extending from opposite spindle poles (bi-orientation). If sister kinetochores attach to microtubules from the same pole (syntelic attachment), the kinetochore-spindle pole connections must be re-oriented to be converted to proper bi-orientation [1, 2]. This re-orientation is facilitated by Aurora B kinase (IpI1 in budding yeast), which eliminates kinetochore-spindle pole connections that do not generate tension [3-6]. Mps1 is another evolutionarily conserved protein kinase, required for spindle-assembly checkpoint and, in some organisms, for duplication of microtubule-organizing centers [7]. Separately from these functions, however, Mps1 has an important role in chromosome segregation [8]. Here we show that, in budding yeast, Mps1 has a crucial role in establishing sister-kinetochore bi-orientation on the mitotic spindle. Failure in bi-orientation with inactive Mps1 is not due to a lack of kinetochore-spindle pole connections by microtubules, but due to a defect in properly orienting the connections. Mps1 promotes re-orientation of kinetochore-spindle pole connections and eliminates those that do not generate tension between sister kinetochores. We did not find evidence that IpI1 regulates Mps1 or vice versa; therefore, they play similar, but possibly independent, roles in facilitating bi-orientation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据