4.6 Article

Induced electrokinetic transport in micro-nanofluidic interconnect devices

期刊

LANGMUIR
卷 23, 期 26, 页码 13209-13222

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la702326v

关键词

-

资金

  1. NEI NIH HHS [2 PN2 EY016570B] Funding Source: Medline

向作者/读者索取更多资源

Hybrid micro-nanofluidic interconnect devices can be used to control analyte transfer from one microchannel to the other through a nanochannel under rest, injection, and recovery stages of operation by varying the applied potential bias. Using numerical simulations based on coupled transient Poisson-Nernst-Planck and Stokes equations, we examine the electrokinetic transport in a gateable device consisting of two 100 mu m long, 1 mu m wide negatively charged microchannels connected by a 1 mu m long, 10 nm wide positively charged nanochannel under both positive and negative bias potentials. During injection, accumulation of ions is observed at the micro-nano interface region with the positive potential and depletion of ions is observed at the other micro-nano junction region. Net space charge in the depletion region gives rise to nonlinear electrokinetic transport during the recovery stage due to induced pressure, induced electroosmotic flow of the second kind, and complex flow circulations. Ionic currents are computed as a function of time for both positive and negative bias potentials for the three stages. Analytical expressions derived for ion current variation are in agreement with the simulated results. In the presence of multiple accumulation or depletion regions, we show that a hybrid micro-nano device can be designed to function as a logic gate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据