4.5 Article

Dynamic interplays between memory systems depend on practice: The hippocampus is not always the first to provide solution

期刊

NEUROSCIENCE
卷 150, 期 4, 页码 743-753

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2007.10.004

关键词

learning; consolidation; water-maze; striatum; CREB; mice

向作者/读者索取更多资源

Previous studies showed that the optimization of behavioral performance through extended training depends on a switch from hippocampus-based memory to striatum-based habit. Here we investigate whether the amount of training within one learning session influences the retention of memory for hippocampal versus striatal strategies. Mice were trained to search for a submerged cue-marked platform which remained in the same spatial location in the water-maze for each of three training regimens (4, 12 or 22 trials). Subsequently, they were either tested for retention of memory 1 h or 24 h later on a probe test or killed at different time points over a 7-h period to determine the kinetic of cAMP response element binding protein (CREB) phosphorylation in both memory systems. During the probe test mice had to choose between a submerged platform located in the same position as during the acquisition phase (spatial solution) and a platform marked by the cue but located in the opposite quadrant of the pool (cue-guided solution). Results showed that the animals first preferred the cue-marked platform, which represents a strategy that was selectively impaired by lesions of the dorsolateral caudate-putamen. With further practice, or context pre-exposure, animals transiently favored the hippocampus-dependent place solution but finally, both strategies became interchangeable and insensitive to either lesion. CREB phosphorylation increased in both memory systems following acquisition but training-dependent changes selectively occurred in the hippocampus wherein. biphasic activation was initiated by the four-trial training and blocked by training for 22 trials. These findings indicate that learning in one session consists of three acquisition stages with parallel engagement of multiple memory systems at the beginning of learning. They suggest, however, that, in a later phase, dynamic interplays promote the use of the most adapted brain system depending on practice and this is accompanied by specific patterns of CREB phosphorylation in the hippocampus. (c) 2007 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据