4.7 Article

Nanoscale organization of the MEC-4 DEG/ENaC sensory mechanotransduction channel in Caenorhabditis elegans touch receptor neurons

期刊

JOURNAL OF NEUROSCIENCE
卷 27, 期 51, 页码 14089-14098

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.4179-07.2007

关键词

somatosensory; mechanosensory; cytoskeleton; ENaC (epithelial sodium channels); transduction; C. elegans

资金

  1. NINDS NIH HHS [NS47715, R01 NS047715-03, R01 NS047715] Funding Source: Medline

向作者/读者索取更多资源

Hearing, touch and proprioception are thought to involve direct activation of mechano-electrical transduction (MeT) channels. In Caenorhabditis elegans touch receptor neurons (TRNs), such channels contain two pore-forming subunits (MEC-4 and MEC-10) and two auxiliary subunits (MEC-2 and MEC-6). MEC-4 and MEC-10 belong to a large superfamily of ion channel proteins (DEG/ENaCs) that form nonvoltage-gated, amiloride-sensitive Na+ channels. In TRNs, unique 15-protofilament microtubules and an electron-dense extracellular matrix have been proposed to serve as gating tethers critical for MeT channel activation. We combined high-pressure freezing and serial-section immunoelectron microscopy to determine the position of MeT channels relative to putative gating tethers. MeT channels were visualized using antibodies against MEC-4 and MEC-2. This nanometer-resolution view of a sensory MeT channel establishes structural constraints on the mechanics of channel gating. We show here that MEC-2 and MEC-5 collagen, a putative extracellular tether, occupy overlapping but distinct domains in TRN neurites. Although channels decorate all sides of TRN neurites; they are not associated with the distal endpoints of 15-protofilament microtubules hypothesized to be gating tethers. These specialized microtubules, which are unique to TRNs, assemble into a cross-linked bundle connected by a network of kinked filaments to the neurite membrane. We speculate that the microtubule bundle converts external point loads into membrane stretch which, in turn, facilitates MeT channel activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据