4.7 Article

Slow strain rate tensile and fatigue properties of Cr-Mo and carbon steels in a 115 MPa hydrogen gas atmosphere

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 40, 期 16, 页码 5739-5748

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2015.02.098

关键词

Hydrogen embrittlement; Slow strain rate tensile test; Fatigue test; Cr-Mo steel; Carbon steel; High pressure hydrogen gas

资金

  1. New Energy and Industrial Technology Development Organization (NEDO)
  2. Fundamental Research Project on Advanced Hydrogen Science
  3. Hydrogen Utilization Technology

向作者/读者索取更多资源

Slow strain rate tensile (SSRT) tests were performed using smooth specimens of two types of steels, the Cr-Mo steel, JIS-5CM435, which has a tempered, martensitic microstructure, and the carbon steel, JIS-SM490B, which has a ferrite/pearlite microstructure. The tests were carried out in nitrogen gas and hydrogen gas, under a pressure of 115 MPa at three different temperatures: 233 K, room temperature and 393 K. In nitrogen gas, these steels exhibited the so-called cup-and-cone fracture at every temperature. In contrast, surface cracking led to a marked reduction in ductility in both steels in hydrogen gas. Nonetheless, even in hydrogen gas, JIS-SCM435 exhibited some reduction of area after the stress-displacement curve reached the tensile strength (TS), whereas JIS-SM490B demonstrated little, if any, necking in hydrogen gas. In addition, tension-compression fatigue testing at room temperature revealed that these steels show no noticeable degradation in fatigue strengths in hydrogen gas, especially in the relatively long-life regime. Considering that there was little or no hydrogen-induced degradation in either the TS or the fatigue strength in JIS-SCM435, it is suggested that the JIS-SCM435 is eligible for safety factor-based fatigue limit design for hydrogen service under pressures up to 115 MPa. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据