4.4 Article

Features of transmembrane segments that promote the lateral release from the translocase into the lipid phase

期刊

BIOCHEMISTRY
卷 46, 期 51, 页码 15153-15161

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi701398y

关键词

-

资金

  1. NIGMS NIH HHS [GM63862-05] Funding Source: Medline

向作者/读者索取更多资源

Topogenic sequences direct the membrane topology of proteins by being recognized and decoded by integral membrane translocases. In this paper, we have compared the minimal sequence characteristics of helical-hairpin, reverse signal-anchor, and stop-transfer sequences in bacterial membrane proteins that use either the YidC or SecYEG translocases for membrane insertion. We find that a stretch composed of 3 leucines and 16 alanines is required for efficient membrane-anchoring of the M 13 procoat protein that inserts by a helical hairpin mechanism, and that a stretch composed of only 19 alanines has a detectable membrane-anchoring ability. Similar results were obtained for the reverse signal-anchor sequence of the single-spanning Pf3 coat protein and for stop-transfer segments engineered into leader peptidase. We have also determined the contribution to the apparent free energy of membrane insertion of M13 procoat for all 20 amino acids. The relative order of the contributions is similar to that determined for a stop-transfer sequence in the mammalian endoplasmic reticulum, but the absolute difference between the contributions for the most hydrophobic and most hydrophilic residues is somewhat larger in the E. coli system. These results are significant because they define the features of a membrane protein transmembrane segment that induce lateral release from the YidC and Sec translocases into the lipid bilayer in bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据