4.8 Article

Implementation of a hamiliton-receptor-based hydrogen-bonding motif toward a new electron donor-acceptor prototype: Electron versus energy transfer

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 129, 期 51, 页码 16057-16071

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja075751g

关键词

-

向作者/读者索取更多资源

A new modular concept for the self-assembly of electron donor-acceptor complexes is presented that ensures (i) fine-tuning the strength of the complexation, (ii) controlling the electronic coupling to impact electron and energy transfer processes, and (iii) high solubility of the corresponding hybrid architectures. This task has been realized through developing a series of porphyrin-fullerene donor-acceptor systems held together by a Hamilton-receptor-based hydrogen-bonding motif. In this context, novel libraries Of C-60 monoadducts (1) containing cyanuric acid side chains and of tetraphenylporphyrin derivatives (2) involving the complementary Hamilton-receptor unit were synthesized. The association constants of the corresponding 1:1 Complexes (1.2) connected by six hydrogen bonds were determined complementary by NMR and fluorescence assays. Their strength, which was found to be in the range between 3.7 x 10(3) and 7.9 x 10(5) M-1, depends on the nature of the spacers, namely, hexylene versus propylene chains. Finally, transient absorption studies revealed photoinduced electron transfer from ZnP to C-60 in the corresponding 1.2 complexes, which generate radical ion pair states that are persistent well beyond the ns time scale. In the case of the analogous SnP complexes, energy instead of electron transfer was observed. This is due to the Shift of oxidation potential caused by presence of Sri in the oxidation state of +4.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据