4.5 Article

Role of multivalent cations in the self-assembly of phosphiolipid-DNA complexes

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 111, 期 51, 页码 14233-14238

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp0762830

关键词

-

向作者/读者索取更多资源

In view of efficient and nontoxic delivery of genes to cells, complexes made of phospholipids (noncationic) and DNA are assembled through the mediation of multivalent cations. The association of lipids with DNA is explained through the charge reversal of lipid headgroups by specific adsorption of cations. The ion binding is quantified by the Gouy-Chapman-Stern theory which provides a good estimate for the minimal concentration of cations required to produce complexes. Coarse-grained Monte Carlo calculations support X-ray diffraction experiments in the sense that lipids form inverted micelles around hexagonally arranged DNA rods, with cations in between to maintain the cohesion. The complexes are more cohesive in terms of total free energy as the cation valence increases. The presented methodology may help develop predictive models for biomolecular self-assembled systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据