4.5 Article

Solvation of calcium ions in methanol-water mixtures: Molecular dynamics simulation

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 111, 期 51, 页码 14271-14278

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp076233v

关键词

-

向作者/读者索取更多资源

Molecular dynamics simulations of CaCl2 solutions in water and methanol-water mixtures, with methanol concentrations of 5, 10, 50, and 90 mol %, at room temperature, have been performed. The methanol and water molecules have been modeled as flexible three-site bodies. Solvation of the calcium ions has been discussed on the basis of the radial and angular distribution functions, the orientation of the solvent molecules, and their geometrical arrangement in the coordination shells. Analysis of the H-bonds of the solvent molecules coordinated by Ca2+ has been done. Residence time of the solvent molecules in the coordination shell has been calculated. The preferential hydration of the calcium ions has been found over the whole range of the mixture composition. The water concentration in the first and second coordination shells of Ca2+ significantly exceeds the water content in the solution, despite the very similar interaction energy of the calcium ion with water and methanol. In aqueous solution and methanol-water mixtures, the first coordination shell of Ca2+ is irregular and long-living. The solvent molecules prefer the antidipole arrangement, but, in aqueous solutions and water-rich mixtures, the water molecules in the primary shell have only one H-bonded neighbor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据