4.6 Article

Mechanistic study on hydrogen spillover onto graphitic carbon materials

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 111, 期 51, 页码 18995-19000

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp074920g

关键词

-

向作者/读者索取更多资源

We present a systematic study on the possible mechanisms of hydrogen spillover onto several carbon-based materials using density functional theory (DFT). Adsorption and diffusion of atomic hydrogen on a graphene sheet, single-walled carbon nanotubes, and a polyaromatic compound, hexabenzocoronene, were calculated, and the potential energies along the selected adsorption and diffusion minimum energy pathways were mapped out. We show that the migration of H atoms from a Pt cluster catalyst to the substrates is facile at ambient conditions with a small energy barrier, although the process is slightly endothermic, and that the H atoms can be either physisorbed or chemisorbed on carbon surfaces. Our results indicate that diffusion of H atoms in a chemisorbed state is energetically difficult since it requires C-H bond breaking and hydrogen spillover would occur likely via physisorption of H atoms. The curvature of the carbon materials is found to have a pronounced influence on the mobility of H atoms. The role of the bridge materials used in experiments is also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据