4.6 Article

Gas-phase structure of a π-allyl-palladium complex:: Efficient infrared Spectroscopy in a 7 T Fourier transform mass spectrometer

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 111, 期 51, 页码 13415-13424

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp074935e

关键词

-

向作者/读者索取更多资源

The performance of infrared JR) spectroscopy of gas-phase ions in a commercially available 7 T Fourier transform ion cyclotron resonance mass spectrometer has been characterized. A pi-allyl-palladium reactive intermediate, [(pi-allyl)Pd(P(C6H5)(3))(2)](+), involved in the catalytic allylation of amine is studied. A solution of this transition metal complex is electrosprayed, and the IR multiple photon dissociation (IRMPD) spectrum of the mass-selected ions is recorded in two spectral ranges. The fingerprint spectrum (650-1550 cm(-1)) is recorded using the Orsay free-electron laser, and the dependence of the IRMPD efficiency on laser power and irradiation time is characterized. The DFT-calculated IR absorption spectrum of the [(pi-allyl)Pd(P(C6H5)(3))(2)](+) complex shows good agreement with the experimental spectrum. The pi-interaction between the palladium and the allyl moiety is reflected by the assignment of the IRMPD bands, and the observed allylic CH2 wagging modes appear to form a sensitive probe for the.pi-interaction strength in metal-pi-allyl complexes. This spectral assignment is further supported by the analysis of the different IRMPD photofragmentation patterns observed at different photon energies, which are found to result from wavelength specific photofragmentations. Nine peaks are well-resolved in the experimental spectrum, for which the bandwidth (fwhm) is on the order of 15 cm(-1). Resonances with a calculated IR intensity of 5 km/mol or larger are shown to be amenable for IRMPD, indicating an excellent sensitivity of our new experimental setup. Finally, the IR spectrum has also been recorded in the CH stretching region (2950-3150 cm(-1)) using a tabletop IR optical parametric oscillator/amplifier (OPO/OPA) laser source.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据