4.6 Article

Terminal differentiation of chick embryo chondrocytes requires shedding of a cell surface protein that binds 1,25-dihydroxyvitamin D3

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 2, 页码 1104-1112

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M703336200

关键词

-

向作者/读者索取更多资源

Endochondral ossification comprises a cascade of cell differentiation culminating in chondrocyte hypertrophy and is negatively controlled by soluble environmental mediators at several checkpoints. Proteinases modulate this control by processing protein signals and/or their receptors. Here, we show that insulin-like growth factor I can trigger hypertrophic development by stimulating production and/or activation of proteinases in some populations of chick embryo chondrocytes. Cell surface targets of the enzymes include 1,25-dihydroxyvitamin D3 membrane-associated rapid response steroid receptor ( 1,25 D3 MARRS receptor), also known as ERp57/GRp58/ERp60. This protein is anchored to the outer surface of plasma membranes and inhibits late chondrocyte differentiation after binding of 1,25-dihydroxyvitamin D3. Upon treatment with insulin-like growth factor I, 1,25 D3 MARRS receptor is cleaved into two fragments of similar to 30 and 22 kDa. This process is abrogated along with hypertrophic development by E-64 or cystatin C, inhibitors of cysteine proteinases. Cell differentiation is enhanced by treatment with antibodies to 1,25 D3 MARRS receptor that either block binding of the inhibitory ligand 1,25-dihydroxyvitamin D3 or inactivate 1,25 D3 MARRS receptor left intact after treatment with proteinase inhibitors. Therefore, proteolytic shedding of 1,25 D3 MARRS receptor constitutes a molecular mechanism eliminating the 1,25-dihydroxyvitamin D3-induced barrier against late cartilage differentiation and is a potentially important step during endochondral ossification or cartilage degeneration in osteoarthritis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据