4.6 Article

Carbohydrate-response element-binding protein deletion alters substrate utilization producing an energy-deficient liver

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 3, 页码 1670-1678

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M706540200

关键词

-

资金

  1. NCRR NIH HHS [RR 02584] Funding Source: Medline
  2. NIDDK NIH HHS [DK 47844, DK 076169, DK 063948-04] Funding Source: Medline

向作者/读者索取更多资源

Livers from mice lacking the carbohydrate-responsive element-binding protein (ChREBP) were compared with wild type (WT) mice to determine the effect of this transcription factor on hepatic energy metabolism. The pyruvate dehydrogenase complex was considerably more active in ChREBP(-/-) mice because of diminished pyruvate dehydrogenase kinase activity. Greater pyruvate dehydrogenase complex activity caused a stimulation of lactate and pyruvate oxidation, and it significantly impaired fatty acid oxidation in perfused livers from ChREBP(-/-) mice. This shift in mitochondrial substrate utilization led to a 3-fold reduction of the free cytosolic [NAD(+)]/[NADH] ratio, a 1.7-fold increase in the free mitochondrial [NAD(+)]/[NADH] ratio, and a 2-fold decrease in the free cytosolic [ATP]/[ADP][P-i] ratio in the ChREBP(-/-) liver compared with control. Hepatic pyruvate carboxylase flux was impaired with ChREBP deletion secondary to decreased fatty acid oxidation, increased pyruvate oxidation, and limited pyruvate availability because of reduced activity of liver pyruvate kinase and malic enzyme, which replenish pyruvate via glycolysis and pyruvate cycling. Overall, the shift from fat utilization to pyruvate and lactate utilization resulted in a decrease in the energy of ATP hydrolysis and a hypo-energetic state in the livers of ChREBP(-/-) mice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据