4.6 Article

Conformational transitions in adenylate kinase - Allosteric communication reduces misligation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 283, 期 4, 页码 2042-2048

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M707632200

关键词

-

资金

  1. NIGMS NIH HHS [T32 GM08326] Funding Source: Medline

向作者/读者索取更多资源

Large conformational changes in the LID and NMP domains of adenylate kinase (AKE) are known to be key to ligand binding and catalysis, yet the order of binding events and domain motion is not well understood. Combining the multiple available structures for AKE with the energy landscape theory for protein folding, a theoretical model was developed for allostery, order of binding events, and efficient catalysis. Coarse-grained models and nonlinear normal mode analysis were used to infer that intrinsic structural fluctuations dominate LID motion, whereas ligand-protein interactions and cracking ( local unfolding) are more important during NMP motion. In addition, LID-NMP domain interactions are indispensable for efficient catalysis. LID domain motion precedes NMP domain motion, during both opening and closing. These findings provide a mechanistic explanation for the observed 1: 1: 1 correspondence between LID domain closure, NMP domain closure, and substrate turnover. This catalytic cycle has likely evolved to reduce misligation, and thus inhibition, of AKE. The separation of allosteric motion into intrinsic structural fluctuations and ligand-induced contributions can be generalized to further our understanding of allosteric transitions in other proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据