4.6 Article

Characterization of htrB and msbB mutants of the light organ symbiont Vibrio fischeri

期刊

APPLIED AND ENVIRONMENTAL MICROBIOLOGY
卷 74, 期 3, 页码 633-644

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/AEM.02138-07

关键词

-

资金

  1. NCRR NIH HHS [R01 RR012294, R01 RR12294] Funding Source: Medline
  2. NIAID NIH HHS [R01 AI050661, R01 AI50661] Funding Source: Medline

向作者/读者索取更多资源

Bacterial lipid A is an important mediator of bacterium-host interactions, and secondary acylations added by HtrB and MsbB can be critical for colonization and virulence in pathogenic infections. In contrast, Vibrio fischeri lipid A stimulates normal developmental processes in this bacterium's mutualistic host, Euprymna scolopes, although the importance of lipid A structure in this symbiosis is unknown. To further examine V. fischeri lipid A and its symbiotic function, we identified two paralogs of htrB (designated htrB1 and htrB2) and an msbB gene in V. fischeri ES114 and demonstrated that these genes encode lipid A secondary acyltransferases. htrB2 and msbB are found on the Vibrio housekeeping chromosome 1 and are conserved in other Vibrio species. Mutations in htrB2 and msbB did not impair symbiotic colonization but resulted in phenotypic alterations in culture, including reduced motility and increased luminescence. These mutations also affected sensitivity to sodium dodecyl sulfate, kanamycin, and polymyxin, consistent with changes in membrane permeability. Conversely, htrB] is located on the smaller, more variable vibrio chromosome 2, and an htrB1 mutant was wild-type-like in culture but appeared attenuated in initiating the symbiosis and was outcompeted 2.7-fold during colonization when mixed with the parent. These data suggest that htrB2 and msbB play conserved general roles in vibrio biology, whereas htrB1 plays a more symbiosis-specific role in V. fischeri.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据