4.6 Article

Observations of Hα surges and ultraviolet jets above satellite sunspots

期刊

ASTRONOMY & ASTROPHYSICS
卷 478, 期 3, 页码 907-913

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20078641

关键词

sun : activity; sun : chromosphere; sun : magnetic fields; sun : UV radiation

向作者/读者索取更多资源

Aims To know more about the physical origin of surges and jets, we investigated seven successive surge events, which occurred above the satellite sunspots of active region NOAA 10720 on 2005 January 15. Methods. Using data from the Transition Region and Coronal Explorer (TRACE), Big Bear Solar Observatory (BBSO) and Solar and Heliospheric Observatory (SOHO), we present a detailed study of the surges and their relations with the associated small arch filament, UV jets, flares and photospheric longitudinal magnetic fields. Results. The seven H-alpha surges we studied repeatedly occurred where the photospheric longitudinal fluxes of opposite magnetic polarities emerged, converged and were canceled by each other. Correspondingly, a small satellite spot emerged, decayed and disappeared during a period of about 2 hours in the white-light observations. In morphology, all surges displayed almost linear ejective structures. Their dynamic properties, such as the transverse velocity, projected maximum length and lifetime, varied in wide ranges. They are 30 -200 km s(-1), 38 000-220 000 km and from several to tens of minutes, respectively. Correspondingly, the intensities of their correlated microflares were different too. The surges of major velocities or maximum lengths seemed to be accompanied by processes of more energy release. Prior to these surge events, a small H-alpha arch filament connecting the opposite flux elements was found at the base region. Instead of erupting completely, it gradually disappeared during the surges. Its role in the surge activities is very like a bipolar flux, which contained the cool plasma and reconnected with the ambient magnetic fields. In 1600 angstrom, three surge events exhibited the composite structures of bright jets and nearby small flaring loops, which provides direct evidence of magnetic reconnection origin of the surges. A careful comparison revealed that the ends of the arch filament, the UV jets and the small flaring loops just corresponded to the interacting longitudinal fluxes in the photosphere. Conclusions. These observational results support the magnetic reconnection model of surges and jets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据