4.6 Article

Cartilage Pressure Distributions Provide a Footprint to Define Female Anterior Cruciate Ligament Injury Mechanisms

期刊

AMERICAN JOURNAL OF SPORTS MEDICINE
卷 39, 期 8, 页码 1706-1713

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0363546511400980

关键词

bone bruise; ACL; articular cartilage; knee injury

资金

  1. NIAMS NIH HHS [R03-AR057551, R01-AR049735, R01-AR056259, R01 AR056259, R01 AR055563, R01 AR049735, R03 AR057551] Funding Source: Medline

向作者/读者索取更多资源

Background: Bone bruises located on the lateral femoral condyle and posterolateral tibia are commonly associated with anterior cruciate ligament (ACL) injuries and may contribute to the high risk for knee osteoarthritis after ACL injury. The resultant footprint (location) of a bone bruise after ACL injury provides evidence of the inciting injury mechanism. Purpose/Hypothesis: (1) To analyze tibial and femoral articular cartilage pressure distributions during normal landing and injury simulations, and (2) to evaluate ACL strains for conditions that lead to articular cartilage pressure distributions similar to bone bruise patterns associated with ACL injury. The hypothesis was that combined knee abduction and anterior tibial translation injury simulations would demonstrate peak articular cartilage pressure distributions in the lateral femoral condyle and posterolateral tibia. The corollary hypothesis was that combined knee abduction and anterior tibial translation injury conditions would result in the highest ACL strains. Study Design: Descriptive laboratory study. Methods: Prospective biomechanical data from athletes who subsequently suffered ACL injuries after testing (n = 9) and uninjured teammates (n = 390) were used as baseline input data for finite element model comparisons. Results: Peak articular pressures that occurred on the posterolateral tibia and lateral femoral condyle were demonstrated for injury conditions that had a baseline knee abduction angle of 5 degrees. Combined planar injury conditions of abduction/anterior tibial translation, anterior tibial translation/internal tibial rotation, or anterior tibial translation/external tibial rotation or isolated anterior tibial translation, external tibial rotation, or internal tibial rotation resulted in peak pressures in the posterolateral tibia and lateral femur. The highest ACL strains occurred during the combined abduction/anterior tibial translation condition in the group that had a baseline knee abduction angle of 5 degrees. Conclusion: The results of this study support a valgus collapse as the major ACL injury mechanism that results from tibial abduction rotations combined with anterior tibial translation or external or internal tibial rotations. Clinical Relevance: Reduction of large multiplanar knee motions that include abduction, anterior translation, and internal/external tibial motions may reduce the risk for ACL injuries and associated bone bruises. In particular, prevention of an abduction knee posture during initial contact of the foot with the ground may help prevent ACL injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据