4.5 Review

Variation and constraint in plant evolution and development

期刊

HEREDITY
卷 100, 期 2, 页码 171-177

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.hdy.6800939

关键词

phenotypic variation; genetic constraints; QTL; plant evolution

向作者/读者索取更多资源

The goal of this short review is to consider the interrelated phenomena of phenotypic variation and genetic constraint with respect to plant diversity. The unique aspects of plants, including sessile habit, modular growth and diverse developmental programs expressed at the phytomer level, merit a specific examination of the genetic basis of their phenotypic variation, and how they experience and escape genetic constraint. Numerous QTL studies with wild and domesticated plants reveal that most phenotypic traits are polygenic but vary in the number and effect of the loci contributing, from a few loci of large effects to many with small effects. Further, somatic mutations, developmental plasticity and epigenetic variation, especially gene methylation, can contribute to increases in phenotypic variation. The flip side of these processes, genetic constraint, can similarly be the result of many factors, including pleiotropy, canalization and genetic redundancy. Genetic constraint is not only a mechanism to prevent change, however, it can also serve to direct evolution along certain paths. Ultimately, genetic constraint often comes full circle and is released through events such as hybridization, genome duplication and epigenetic remodeling. We are just beginning to understand how these processes can operate simultaneously during the evolution of ecologically important traits in plants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据