4.5 Article

Genome-wide analysis identifies MYND-Domain protein mub1 as an essential factor for Rpn4 ubiquitylation

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 28, 期 4, 页码 1404-1412

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.01787-07

关键词

-

向作者/读者索取更多资源

The proteasome homeostasis in Saccharomyces cerevisiae is regulated by a negative feedback circuit in which the Rpn4 transcription factor upregulates the proteasome genes and is rapidly degraded by the proteasome. Previous work has identified Ubr2 and Rad6 as the cognate E3 and E2 enzymes for Rpn4 ubiquitylation. However, our recent attempts to ubiquitylate Rpn4 using purified Ubr2 and Rad6 proteins in a reconstitution system have been unsuccessful, suggesting that an additional factor is required for Rpn4 ubiquitylation. Here, We screened the entire collection of the single-gene-deletion yeast mutants generated by the Saccharomyces Genome Deletion Project and identified the mubl Delta mutant defective in ubiquitin-dependent degradation of Rpn4. An in vitro reconstitution ubiquitylation assay confirms that Mub1 is the missing factor for Rpn4 ubiquitylation. We further show that Mub1 directly interacts with Ubr2 and Rpn4. The MYND domain of Mub1 may play an important role in Rpn4 ubiquitylation. Interestingly, Mub1 itself is a short-lived protein and its degradation is dependent on the Ubr2/Rad6 ubiquitin ligase. Together, these data suggest that Mub1 and Ubr2 cooperate to transfer ubiquitin to Rpn4 from Rad6 and that Mub1 may switch from a partner to a substrate of the Ubr2/Rad6 ubiquitin ligase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据