4.8 Article

Studies on the mechanism of inhibition of bacterial ribonuclease P by aminoglycoside derivatives

期刊

NUCLEIC ACIDS RESEARCH
卷 36, 期 2, 页码 697-704

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkm1088

关键词

-

资金

  1. NIGMS NIH HHS [R01 GM067807] Funding Source: Medline

向作者/读者索取更多资源

Ribonuclease P (RNase P) is a Mg2+-dependent endoribonuclease responsible for the 5'-maturation of transfer RNAs. It is a ribonucleoprotein complex containing an essential RNA and a varying number of protein subunits depending on the source: at least one, four and nine in Bacteria, Archaea and Eukarya, respectively. Since bacterial RNase P is required for viability and differs in structure/subunit composition from its eukaryal counterpart, it is a potential antibacterial target. To elucidate the basis for our previous finding that the hexa-arginine derivative of neomycin B is 500-fold more potent than neomycin B in inhibiting bacterial RNase P, we synthesized hexa-guanidinium and -lysyl conjugates of neomycin B and compared their inhibitory potential. Our studies indicate that side-chain length, flexibility and composition cumulatively account for the inhibitory potency of the aminoglycoside-arginine conjugates (AACs). We also demonstrate that AACs interfere with RNase P function by displacing Mg2+ ions. Moreover, our finding that an AAC can discriminate between a bacterial and archaeal (an experimental surrogate for eukaryal) RNase P holoenzyme lends promise to the design of aminoglycoside conjugates as selective inhibitors of bacterial RNase P, especially once the structural differences in RNase P from the three domains of life have been established.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据