4.7 Article

Nickel nanoparticles modified CdS - A potential photocatalyst for hydrogen production through water splitting under visible light irradiation

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 40, 期 1, 页码 340-345

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2014.11.005

关键词

CdS; Ni nanoparticles; Photocatalyst; Water splitting; Hydrogen production; Photocatalytic activity

资金

  1. International Cooperation Program (Science & Technology Department of Henan Province) [130602]
  2. Chinese National Engineering Center of Environmental Photocatalysis [K-092001]

向作者/读者索取更多资源

Ni nanoparticles were prepared via chemical reduction of aqueous NiCl2 center dot 6H(2)O by N2H4 center dot H2O, and loaded on the surface of CdS by photo-induced electrons as water splitting reaction was occurring. Resultant CdS modified with Ni nanoparticles (denoted as Ni/CdS) was characterized by transmission electron microscopy, X-ray diffraction, UV vis diffuse reflectance spectrometry, and photoluminescence spectrometry, and its photocatalytic performance for water splitting under visible light irradiation producing hydrogen was evaluated with a 300 W Xe lamp as the light source (lambda >= 420 nm). It was found that as-obtained Ni nanoparticles with an average size of about 10 nm have face centered cubic structure, and they are preferentially deposited on the (100), (002), and (101) crystal planes of CdS nanorods to afford Ni/CdS photocatalyst. Besides, as-prepared Ni/CdS photocatalyst has a surface area of 28.8 m(2)/g (determined by BET method), higher than that of CdS nanorods, which indicates that Ni nanoparticles is beneficial to increasing the surface area of CdS nanorods. Moreover, as-prepared Ni/CdS photocatalyst shows absorption traits in the visible light region, and its photoluminescence peak intensity is lower than that of CdS, which means that Ni nanoparticles function as the trappers of photo-generated electrons to quench the photoluminescence of CdS. More importantly, although pristine CdS exhibits no activity for hydrogen production from water splitting under visible light irradiation, Ni/ CdS photocatalyst with a Ni content of 4% (mass fraction) provides a hydrogen production rate of 25.848 mmol/(h g) (QE = 26.8%, lambda = 420 nm) from water splitting of (NH4)(2)SO3 aqueous solution under the same testing condition and it retains a high stability and activity even after 20 h of water splitting. This demonstrates that Ni/CdS could be a promising candidate photocatalyst for visible light water splitting yielding hydrogen. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据