4.7 Article

Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome

期刊

MOLECULAR ECOLOGY
卷 17, 期 4, 页码 964-980

出版社

WILEY
DOI: 10.1111/j.1365-294X.2007.03551.x

关键词

chicken; collared flycatcher; comparative anchored tagged sequences; linkage mapping; QTL analysis; single nucleotide polymorphism

向作者/读者索取更多资源

Although there is growing interest to take genomics into the complex realms of natural populations, there is a general shortage of genomic resources and tools available for wild species. This applies not at least to birds, for which genomic approaches should be helpful to questions such as adaptation, speciation and population genetics. In this study, we describe a genome-wide reference set of conserved avian gene markers, broadly applicable across birds. By aligning protein-coding sequences from the recently assembled chicken genome with orthologous sequences in zebra finch, we identified particularly conserved exonic regions flanking introns of suitable size for subsequent amplification and sequencing. Primers were designed for 242 gene markers evenly distributed across the chicken genome, with a mean inter-marker interval of 4.2 Mb. Between 78% and 93% of the markers amplified a specific product in five species tested (chicken, peregrine falcon, collared flycatcher, great reed warbler and blue tit). Two hundred markers were sequenced in collared flycatcher, yielding a total of 122.41 kb of genomic DNA sequence (12096 bp coding sequence and 110 314 bp noncoding). Intron size of collared flycatcher and chicken was highly correlated, as was GC content. A polymorphism screening using these markers in a panel of 10 unrelated collared flycatchers identified 871 single nucleotide polymorphisms (pi = 0.0029) and 33 indels (mainly very short). Avian genome characteristics such as uniform genome size and low rate of syntenic rearrangements suggest that this marker set will find broad utility as a genome-wide reference resource for molecular ecological and population genomic analysis of birds. We envision that it will be particularly useful for obtaining large-scale orthologous targets in different species - important in, for instance, phylogenetics - and for large-scale identification of evenly distributed single nucleotide polymorphisms needed in linkage mapping or in studies of gene flow and hybridization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据