4.7 Article

Experiment and numerical analysis for sulfuric acid decomposition reaction for applying hydrogen by nuclear

期刊

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
卷 40, 期 25, 页码 7932-7942

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijhydene.2015.02.138

关键词

Hydrogen by nuclear; VHTR-SI (sulfur iodine) thermochemical cycle; High pressure sulfuric acid decomposition reaction; Sulfuric acid decomposer; Computational fluid dynamics

资金

  1. National Research Foundation of Korea (NRF) grant - Korean Government (MSIP) [53154-14]

向作者/读者索取更多资源

Nuclear hydrogen production is a large-scale process via direct thermochemical water splitting, using the high heat output of the very high temperature reactor (VHTR). However, transferring the high heat output of Helium (the gas-coolant for VHTR) to the SI (Sulfur-Iodine) thermochemical cycle involves the great challenge of developing a heat exchanger material capable of withstanding high temperatures and pressures. During the sulfuric acid decomposition reaction, which has the highest heat requirement in the SI thermochemical cycle, maintaining decomposition efficiency close to the equilibrium conversion rate, despite the elevated pressure, will afford greater flexibility in heat exchanger design. Herein, to determine the optimal pressure for VHTR-SI thermochemical hydrogen production, we performed sulfuric acid decomposition under atmospheric (0.4 kgf/cm(2)) and elevated (5.0 kgf/cm(2)) pressure conditions, and analyzed their respective decomposition efficiencies. Additionally, we performed a thermal hydraulic simulation to investigate the conditions inside and outside the reactor, which are difficult to verify experimentally, by simulating the interior of the reactor for the pressurized sulfuric acid decomposition system. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据